Comparison of Hyper-X Mach 10 Scramjet Preflight Predictions and Flight Data

Presented by

Paul G. Ferlemann Swales Aerospace, Inc. NASA Langley Research Center

Outline

- Vision vehicle
- Engine design process
 - Analytical
 - Experimental
 - Data analysis → combustor performance model
- Flight vehicle propulsion database
- Hyper-X flight 3 scramjet propulsion test
 - Surface pressure
- Conclusions
- Acknowledgments

Vision Vehicle

- Dual-Fuel Global Reach vehicle.
- Cruise at Mach 10.
- Hypersonic cruise lifting-body configuration.
- X-43 = 6% scale.
- Demonstrating cruise capability with a subscale vehicle very challenging.
- Re-engine the X-43 Mach 7 vehicle.

Initial Engine Design Process

- Engine redesigned not scaled down.
- Vehicle already defined many constraints.
- Aero database existed design for vehicle performance.
- Two stage analytical approach.
- First stage: SRGULL tip-to-tail cycle analysis.
 - 3D spillage, η_{KE} , η_{c} , base pressure
 - $-M_{\infty}$, α , q_{bar} , + 5 geometry variables
- Second stage: GASP & SHIP CFD.
 - Focused on fuel injector design
 - Thermal analysis performed for injector survivability

Wind Tunnel Engine Testing

- Unable to test ignition sequence ⇒ separate tests with a silane-hydrogen mixture & pure H₂.
- HyPulse reflected shock tunnel
 - Partial width and truncated forebody and aftbody sections
 - Semi-direct connect test configuration
- LENS reflected shock tunnel
 - Full flowpath model with 2D forebody and aftbody sections
 - Free-jet test configuration
- All testing showed a sensitivity to fuel composition design modified to improve hydrogen only combustion.

Final Engine Testing

- HyPulse: 55 runs at 8 test conditions
 - Mach 9 total enthalpy
 - Mach 10 total enthalpy in 6 configurations
 - Mach 10.3 total enthalpy
- LENS: 20 runs at 4 test conditions
 - Low, nominal, and high dynamic pressure
 - 2° AoA at nominal dynamic pressure

Engine Test Data Analysis

- Consistent methodology applied to every test.
- Goal → determine combustion efficiency.
- GASP forebody and inlet.
 - 2D, blunt leading edges, transition guided by heat flux data
- SHIP injectors, combustor, and nozzle.
 - 3D PNS, center slice, 1-step reaction model
 - $-\eta_c = \eta_m \cdot \eta_r$
 - η_r schedule determined by matching discrete pressure distribution in the combustor
 - Final η_r based on internal nozzle axial force
 - Relatively easy to perform analysis for silane-hydrogen mixtures

Combustor Performance Model

Model created from analysis of engine test data

Pressure

Flight Vehicle Propulsion Database

- Provide engine mass capture, propulsion surface forces and moment over a design space of Mach 9.5 to 10.5, angle of attack -1° to 3°, and dynamic pressure 800 to 1200 psf for both unfueled and fueled conditions.
- CFD database f(M_∞,α,q_{bar},φ,η_r).

Overview of Flight Test

- Engine fueling sequence designed to match engine wind tunnel test composition and levels.
- Ignitor and H₂ to high levels quickly.
- Gradual transition to pure H₂.
- Well controlled.
- Duration = 50 times longer than sum total of all final engine tests.

Centerline Pressure Fuel Off

- · Shock-dominated flow.
- No nozzle pressurization.

Centerline Pressure Fuel On

Significant pressure rise.

Surface Pressure Contours

14

Conclusions

- The Hyper-X program's third X-43 vehicle demonstrated successful air-frame integrated scramjet operation and vehicle control at hypervelocity conditions.
- Good agreement with expectations is an important validation of propulsion testing in pulse facilities and in the computational techniques used to understand scramjet engine test data.
- Demonstrated cruise capability (subscale) at the design cruise Mach number of a vision vehicle, shows that a vehicle could be designed to accelerate through Mach 10 using an airbreathing engine.

Acknowledgments

- Randy Voland and Larry Huebner
 Hyper-X propulsion team leads
- Shelly Ferlemann SRGULL calculations
- Robert Bittner finite rate kinetics and aerodynamic database analysis
- Vince Cuda fuel injector thermal analysis
- Glenn Bobskill, Tom Jentink, and Ben Meyer
 GASP calculations
- Clay Roger, Ann Shih, and David Witte
 engine ground test program